PENDUGAAN PERUBAHAN CADANGAN KARBON DI TAMBLING WILDLIFE NATURE CONSERVATION TAMAN NASIONAL BUKIT BARISAN SELATAN

(Carbon Stock Changes Assessment in Tambling Wildlife Nature Conservation Bukit Barisan Selatan National Park)

ARIF PRASETYO\(^1\), AGUS HIKMAT\(^2\) DAN LILIK BUDI PRASETYO\(^3\)

\(^1\) Departemen Konservasi Sumberdaya Hutan dan Ekowisata Fakultas Kehutanan IPB
\(^2\) Bagian Konservasi Keaneakaragaman Tumbuhan Departemen Konservasi Sumberdaya Hutan dan Ekowisata Fakultas Kehutanan IPB
\(^3\) Bagian Hutan Koja dan Jasa Lingkungan Departemen Konservasi Sumberdaya Hutan dan Ekowisata Fakultas Kehutanan IPB

Diterima 7April 2011/Disetujui 16 Juni 2011

ABSTRACT

Global warming effect can be mitigated in two ways, namely carbon loss reduction or emission and increasing carbon storage within vegetation. Forest can absorb CO\(_2\) through photosynthesis process and sink them in biomass. Tambling Wildlife Nature Conservation (TNWC) as a part of Bukit Barisan Selatan National Park (BBSNP) have been facing land cover change due to encroachment. The study aimed to measure carbon stocks in various land cover and to compare carbon stocks for the whole area of TNWC TNBBS in 2000-2009. Carbon stocks measurement was conducted in TNWC TNBBS during August 8th to October 8th 2009. 50 plots were sampled including nature forest, secondary forest, agroforestry, shrub, Imperata cylindrical, and grassland by purposive sampling method. Soil carbon was not measured in this study. Nature forest has the highest carbon stocks by 178.44 MgCha\(^{-1}\), and grassland be a poorest carbon stocks (1.47 MgCha\(^{-1}\)). During the time between 2000 to 2009, primary forest carbon stock decrease in amount of 457,792.52 Mg along with the decrease in land cover of this forest type. As many as 24.4% of natural forests in 2000 turned into the others type of land use such as a secondary forest of 21.63%, for shrubs 1.61% and 0.06% for agroforestry in 2009. Totally, TNWC TNBBS has lost its carbon stocks as many as 279,422 Mg, it’s mean the annual average carbon stocks contained in the TNWC TNBBS area decreased by around 27,942.2 Mg (0.72%) per year. Its mean, 1,024,547 Mg CO\(_2\) or 102,454.7 Mg CO\(_2\) every year was lose from TNWC TNBBS area.

Keywords: biomass, carbon stock, emission, forest

PENDAHULUAN

Teknologi penginderaan jarak jauh merupakan salah satu cara yang efektif dalam melakukan pemantauan perubahan lahan dari waktu ke waktu. Integrasi data tentang perubahan penutupan vegetasi dengan data hasil pengukuran cadangan karbon yang diwakili oleh beberapa skala plot dapat memberikan pendugaan perubahan cadangan karbon pada skala lanskap. Penelitian tentang pendugaan jumlah cadangan karbon yang tersimpan di suatu kawasan konservasi saat ini masih belum banyak, oleh karena itu perlu dilakukan kajian untuk menduga jumlah karbon tersimpan pada suatu kawasan yang memiliki tipe penutupan lahan yang berbeda.

Tujuan dari penelitian ini ialah untuk mengetahui perubahan cadangan karbon yang tersimpan di kawasan TNWC TNBBS. Data tentang deforestasi dan degradasi hutan yang disertai dengan data jumlah cadangan karbon yang berubah dalam kurum waktu tertentu di dalam kawasan ini dapat dijadikan sebagai acuan untuk menentukan Reference Emission Level (REL) guna menghadapi isu perubahan iklim akibat deforestasi dan degradasi hutan.

METODOLOGI

Pengumpulan data lapang dilakukan mulai tanggal 8 Agustus hingga 8 Oktober 2009 di TNWC TNBBS (Gambar 1). Selanjutnya dilakukan analisis dan pengolahan data hingga Februari 2010 di Spatial
Pengolahan data dilakukan terhadap beberapa aspek, yakni:

1. Biomassa tersimpan

Perhitungan nilai biomassa yang tersimpan di setiap plot pengukuran menggunakan dua pendekatan, yaitu persamaan allometric dan dengan cara destruktif. Sedangkan nilai kerapatan kayu di beberapa tipe penggunaan lahan sebagai satu variabel penduga nilai biomassa disajikan dalam Tabel 1.

Tabel 1. Kerapatan kayu pada beberapa sistem penggunaan lahan

<table>
<thead>
<tr>
<th>Sistem penggunaan lahan</th>
<th>Nilai tengah kerapatan jenis kayu (Mg.m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hutan primer*</td>
<td>0,68</td>
</tr>
<tr>
<td>Hutan sekunder*</td>
<td>0,61</td>
</tr>
<tr>
<td>Agroforestri</td>
<td>0,63</td>
</tr>
</tbody>
</table>

* Sumber : Lusiana et al. (2005)

Korelasi positif antara diameter, biomassa, dan karbon yang tersimpan dalam biomassa vegetasi digunakan untuk menduga nilai cadangan karbon dalam skala plot pengukuran cadangan karbon (Tabel 2).

Tabel 2. Daftar persamaan allometrik yang akan digunakan untuk menduga nilai biomassa tersimpan di dalam beberapa vegetasi

<table>
<thead>
<tr>
<th>Kategori biomassa</th>
<th>Persamaan allometrik</th>
<th>Sumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pohon berbatang</td>
<td>B = 0,11p(D₁/Σ₂)</td>
<td>Katterings (2001)</td>
</tr>
<tr>
<td>(pohon mati)</td>
<td>B = (π/4)ρH(D)²</td>
<td>Harihah (2002)</td>
</tr>
<tr>
<td>Bambu</td>
<td>B = 0,131(D₁/Σ₂)</td>
<td>Priyadarsini (2000)</td>
</tr>
<tr>
<td>Coffe sp.</td>
<td>B = 0,281(D₁/Σ₂)</td>
<td>Arifin (2001); van Noordwijk (2002)</td>
</tr>
<tr>
<td>Theobroma sp.</td>
<td>B = 3,9 + 0,23BA+</td>
<td>Seeroth et al (2002).</td>
</tr>
<tr>
<td></td>
<td>0,0015(BA)³</td>
<td></td>
</tr>
<tr>
<td>Masa sp.</td>
<td>B = 0,03(D₁/Σ₂)</td>
<td>Arifin (2001); van Noordwijk (2002)</td>
</tr>
</tbody>
</table>

Keterangan : Sumber : Hairah dan Rahan (2007)

B = biomassa (kg.pohon⁻¹); D = diameter setengan dada (cm); H = tinggi pohon (cm); BA = basal area (cm²); ρ = kerapatan kayu (g.cm⁻³).

Persamaan lain yang akan digunakan untuk menduga nilai biomassa tumbuhan bawah sebagai berikut:

\[
\%KA = \frac{BBc - BKc}{BB} \times 100\%
\]

\[
BKT = \frac{BB}{1 + \%KA/100}
\]

Gambar 1. Lokasi penelitian di TWNC TNBBS

Data yang dikumpulkan yaitu data spasial dan data atribut. Data spasial meliputi peta rupa bumi, citra landsat dan data ground truth. Data atribut meliputi data penutupan dan penggunaan lahan dan data cadangan karbon yang tersimpan di setiap penutupan lahan tersebut. Selain itu juga dikumpulkan data tentang sejajar dan pola penggunaan lahan.

Pemilihan plot pengukuran biomassa dilakukan secara purposive sampling di 40 plot contoh (Gambar 2) yang mewakili 8 tipe penutupan lahan. Sedangkan untuk pengukuran cadangan karbon di tipe penutupan lahan lainnya, digunakan data sekunder yang relevan.

Gambar 2. Plot contoh untuk pengukuran biomassa.

Keterangan : a. subplot pengukuran tumbuhan bawah dan serasah berukuran 2 x 0,5m x 0,5m; b. subplot pengukuran vegetasi berdiameter 5 cm - 30 cm; c. subplot pengukuran vegetasi berdiameter > 30 cm.
Keterangan:
* KA = Persen Kadar Air
* BKc = Berat Kering Contoh
* BCc = Berat Basah Contoh
* BKT = Berat Kering Tanur (Biomassa)

2. Kandungan karbon tersimpan Nilai cadangan karbon yang tersimpan di tiap penutupan lahan dihitung menggunakan persamaan yang digunakan oleh Lasco et al. (2004) sebagai berikut:
- Karbon tersimpan di hutan primer/tua = biomassa x 50%
- Karbon tersimpan di hutan sekunder = biomassa x 44,6%
- Karbon tersimpan di Agroforestri = biomassa x 44%
- Karbon tersimpan di padang rumput / ilalang / belukar = biomassa x 42,9%.

3. Perubahan karbon tersimpan Pendugaan cadangan karbon dalam skala lanskap dilakukan dengan beberapa tahap sebagai berikut:
1. Interpretasi ulang tipe penutupan lahan yang ada pada peta berdasarkan tipe penutupan lahan dari hasil pengukuran plot di lapangan.
2. Pemberian atribut tiap tipe penutupan lahan dan data kerapatan cadangan karbon hasil pengukuran di lapangan.
3. Penghitungan luas tiap tipe penutupan lahan untuk memperoleh jumlah total karbon di TWNC TNBBS

HASIL DAN PEMBAHASAN

Penutupan lahan

Tabel 3. Rekapitulasi tipe penutupan lahan tahun 2000 hingga 2009 di TWNC TNBBS

<table>
<thead>
<tr>
<th>No.</th>
<th>Tipe penutupan lahan</th>
<th>Luas tahun 2000 (ha)</th>
<th>%</th>
<th>Luas tahun 2009 (ha)</th>
<th>%</th>
<th>Perubahan penutupan lahan (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hutan primer</td>
<td>1911,41</td>
<td>62,45</td>
<td>1654,87</td>
<td>54,01</td>
<td>-256,54</td>
</tr>
<tr>
<td>2</td>
<td>Hutan sekunder</td>
<td>5765,58</td>
<td>18,84</td>
<td>7892,55</td>
<td>25,76</td>
<td>2126,97</td>
</tr>
<tr>
<td>3</td>
<td>Mangrove*</td>
<td>131,40</td>
<td>0,43</td>
<td>90,9</td>
<td>0,30</td>
<td>-40,5</td>
</tr>
<tr>
<td>4</td>
<td>Semak belukar</td>
<td>484,11</td>
<td>1,58</td>
<td>982,08</td>
<td>3,21</td>
<td>497,97</td>
</tr>
<tr>
<td>5</td>
<td>Agroforestri kopitua</td>
<td>164,88</td>
<td>0,54</td>
<td>160,47</td>
<td>0,52</td>
<td>-4,41</td>
</tr>
<tr>
<td>6</td>
<td>Agroforestri kopimuda</td>
<td>0,00</td>
<td>0,00</td>
<td>53,91</td>
<td>0,18</td>
<td>53,91</td>
</tr>
<tr>
<td>7</td>
<td>Agroforestri cokelat muda</td>
<td>0,00</td>
<td>0,00</td>
<td>7,2</td>
<td>0,02</td>
<td>7,2</td>
</tr>
<tr>
<td>8</td>
<td>Padang ilalang</td>
<td>27,09</td>
<td>0,09</td>
<td>16,47</td>
<td>0,05</td>
<td>-10,62</td>
</tr>
<tr>
<td>9</td>
<td>Padang rumput</td>
<td>52,83</td>
<td>0,17</td>
<td>60,03</td>
<td>0,20</td>
<td>7,2</td>
</tr>
<tr>
<td>10</td>
<td>Pertanian**</td>
<td>41,13</td>
<td>0,13</td>
<td>50,85</td>
<td>0,17</td>
<td>9,72</td>
</tr>
<tr>
<td>11</td>
<td>Permukiman</td>
<td>15,39</td>
<td>0,05</td>
<td>17,19</td>
<td>0,06</td>
<td>1,8</td>
</tr>
<tr>
<td>12</td>
<td>Lahan terbuka</td>
<td>349,56</td>
<td>1,14</td>
<td>326,15</td>
<td>1,10</td>
<td>-13,41</td>
</tr>
<tr>
<td>13</td>
<td>No data***</td>
<td>4203,72</td>
<td>13,74</td>
<td>4203,72</td>
<td>13,72</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Badan air</td>
<td>254,25</td>
<td>0,83</td>
<td>216,63</td>
<td>0,71</td>
<td>-37,62</td>
</tr>
</tbody>
</table>

Total: 3060,35 100 3060,34,02 100

Keterangan: Sumber: *Hilmi (2003), ** Lusiana et al (2005), *** awan dan bayangan awan
Perubahan cadangan karbon

Total perubahan cadangan karbon yang tersimpan di TWNC TNBBS dari tahun 2000 hingga 2009 berkurang sebesar 279.422 Mg (7,17%) atau berkurang sebesar 27.942,2 Mg (0,72%) per tahun. Hal yang berbeda terjadi di Kabupaten Nunukan, Kalimantan Timur. Perubahan cadangan karbon di lokasi ini terhitung dari tahun 1996 hingga tahun 2003 mencapai 17% (Lusiana et al. 2005) dengan kondisi jumlah cadangan karbon yang lebih baik di tipe lahan berupa hutan seperti yang tersaji dalam Tabel 2. Nilai kehilangan karbon tersebut setara dengan pelepasan CO$_2$ dari kawasan ini sebesar 1.024.547 Mg atau 102.454,7 Mg CO$_2$ tiap tahunnya dengan asumsi bahwa 1 Mg karbon setara dengan 3.667 Mg CO$_2$ (von Mirbach 2000). Rekapsitulasi kondisi cadangan karbon di TWNC TNBBS pada tahun 2000 dan tahun 2009 tersaji dalam Tabel 4.

<table>
<thead>
<tr>
<th>No</th>
<th>Tip penutupan lahan</th>
<th>Rata-rata cadangan karbon (mg.ha$^{-1}$)</th>
<th>Karbon 2000 (mg)</th>
<th>Karbon 2009 (mg)</th>
<th>Perubahan cadangan karbon (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hutan primer</td>
<td>178,4</td>
<td>3410/22</td>
<td>29532</td>
<td>45790,52</td>
</tr>
<tr>
<td>2</td>
<td>Hutan sekunder</td>
<td>81,65</td>
<td>4707/50</td>
<td>6444/13</td>
<td>17366/56</td>
</tr>
<tr>
<td>3</td>
<td>Mangrove*</td>
<td>30,64</td>
<td>4026/10</td>
<td>2785/18</td>
<td>-1240/92</td>
</tr>
<tr>
<td>4</td>
<td>Semak belukar</td>
<td>10,29</td>
<td>4981/94</td>
<td>1010/65</td>
<td>5124/57</td>
</tr>
<tr>
<td>5</td>
<td>Agroforestri kop tua</td>
<td>63,69</td>
<td>4604/17</td>
<td>4781/02</td>
<td>-123/15</td>
</tr>
<tr>
<td>6</td>
<td>Agroforestri kop ruda</td>
<td>27,92</td>
<td>-</td>
<td>757/18</td>
<td>757/18</td>
</tr>
<tr>
<td>7</td>
<td>Agroforestri cokelat muda</td>
<td>14,04</td>
<td>-</td>
<td>74/09</td>
<td>74/09</td>
</tr>
<tr>
<td>8</td>
<td>Paudang ilalang</td>
<td>3,57</td>
<td>96/73</td>
<td>58/81</td>
<td>-37/92</td>
</tr>
<tr>
<td>9</td>
<td>Paudang rumpat</td>
<td>1,47</td>
<td>77/96</td>
<td>88/59</td>
<td>10/63</td>
</tr>
<tr>
<td>10</td>
<td>Pemakaman*</td>
<td>3,36</td>
<td>138/20</td>
<td>170/86</td>
<td>32/66</td>
</tr>
<tr>
<td>11</td>
<td>Lahan terbuak</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>No data**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Badan air</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>389489</td>
<td>361536</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan: *Hilmi (2003), ** Lusiana et al (2005), *** tidak dilakukan pendugaan cadangan karbon. **** awan dan bayangan awan

Penurunan cadangan karbon sebesar 0,72% per tahun di kawasan ini masih bisa diperkecil dan akan lebih mudah jika dilaksanakan dengan kerjasama berbagai pihak yang berkepentingan. Sistem agroforestri yang sudah adadi dalam kawasan TWNC TNBBS bisa menjadi sistem yang memiliki kemampuan cukup baik dalam menyerap dan menyimpan karbon dan bisa lebih bermanfaat bagi masyarakat di sekitar kawasan terlepas dari perambahan kawasan yang sudah terjadi. Sebagai contoh, sistem agroforestri sederhana di Sumberjaya Lampung Barat mampu menyimpan karbon sebesar 82 Mg.ha$^{-1}$ dalam kurun waktu 25 tahun setelah pembukaan lahan (van Noordwijk et al. 2002), bahkan untuk agroforestri kompleks rempong damar (Shorea javanica) seperti di Kruji, Lampung Barat mampu menyimpan karbon hingga mencapai 344,73 Mg.ha$^{-1}$ (Rizon 2005). Hal ini akan menjadi lebih baik jika hanya membiarkan lahan terbuka terbengkalai, atau menjadikan lahan pertanian yang lebih terbuka. Di beberapa lokasi, sistem agroforestri yang berdampingan dengan hutan bisa menjadi jalan tengah antara kepentingan pelestarian hutan dan kesejahteraan masyarakat.

KESIMPULAN

1. Total perubahan cadangan karbon yang tersimpan di TWNC TNBBS dari tahun 2000 hingga 2009 berubah sebesar -279.422 Mg (7,17%) atau berkurang sebesar 27.942,2 Mg (0,72%) per tahun. Nilai kehilangan karbon tersebut setara dengan pelepasan CO$_2$ dari kawasan ini sebesar 1.024.547 Mg atau 102.454,7 Mg CO$_2$ tiap tahunnya.
2. Pengurangan cadangan karbon tersimpan disebabkan oleh alih guna hutan primer terutama menjadi hutan sekunder dan semak belukar.
3. Untuk tetap menjaga keberadaan cadangan karbon yang tersimpan harus terus menerus dilakukan kegiatan reforestasi di tipe lahan berupa semak belukar, dan hutan sekunder untuk meningkatkan penyerapan dan penyimpanan karbon di dalam biomassa vegetasi.
4. Perlu dilakukan kegiatan reforestasi di tipe penutupan lahan berupa semak belukar, dan hutan sekunder untuk meningkatkan penyerapan dan penyimpanan karbon di dalam biomassa vegetasi.
5. Perlu dilakukan kerjasama antara BBTNBBS, PT. Adhinaia Kreasinsa (TWNC) dan masyarakat enclaves Pengekukan untuk mengelola sistem agroforestri di daerah pasca perambahan agar sistem ini mampu menyerap dan menyimpan karbon secara optimal dan bermanfaat bagi pihak-pihak yang berkepentingan.

DAFTAR PUSTAKA

